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SCATTERING OF A LONGITUDINAL HAVE BY A SPHERICAL CAVITY WITH A 
FLUiD IN AN ELASTIC POROUS SATURATED MEDIUM* 

V-N. KBUTIN, M.G. MABKOV and A.YU. YUMATOV 

The diffraction of a plane longitudinal harmonic wave propagating in an 
unbounded elastic porous permeable fluid-saturated medium, by a spherical 
cavity with a fluid is examined. The Frenkel-Biot model /l-3/& used. 
to describe the dynamics of the porous saturated elastic medium. 

The equations describing the space of harmonic waves in a saturated porous medium have 
the form &,,U + $P,," = iob (V -U) - NAU -V [(A + N)VU + 

QVV!, b = qUW’ (&El 

dp,,U + a&.v = hb (U - W - V (QVU + RVV) 

(1) 

Here U and V are, respectively, the displacement vectors of the solid and liquid phases 
in the pores, p,, and pl, are the coefficients of dynamic density, p,* is the mass coupling 
coefficient between the liquid andsolidphases, A,N,Q,R are elastic conr~ants, q is the 
dynamic viscosity of the fluid, it is the bulk porosity, I( is the permeability, and o is the 
angular frequency; the function P(o) describes the deviation in the pores from Poiseuille 
flow /2/. 

We represent the displacement vectors of the solid and liquid phases as the sum of dis- 
placement vectros in the incident and scattered waves, i.e., 

u=zI+u, v=n+v 
A plane travelling wave with the displacements II in the solid and rr in the liquid phases 

satisfies system (1). Therefore, because of the linearity of this system, the fields u and Y 
of the scattered waves satisfy them. Introducing the spherical coordinates r, 0, p with origin 
at the centre of a spherical cavity of radius a and polar axis coincident with the direction 
of incident wave propagation, we determine the complex amplitudes of the scattered wave dis- 
placement potentials by the following relationships: 

u = V<\ +v X (Wq,, v = v B + v X (a,) (2) 

where eip is the unit vector in the equatorial direction, and the factor exp(--iwtl is omitted 

everywhere. 
Substituting (2) into (1) applying the divergence operation to the system of equations, 

we reduce it to the form 

where P,and p2 are the densities of the solid and liquid phase material in the pores. 
Performing the substitution A =A~+.\~, B = ml.\,+ m,A,, we require that .I1 and .I2 satisfy 

the Helmholtz equations 
A.\* +X2& Ai =T 0 iii 

For this it is necessary that ?&and & should be the roots of the following dispersion equa- 
tion: 

(w?22 - %?9 P - (Ywhr -I- Y&z11 - 2Y,,d E t (Y11Y** - Yd) = 0 (4) 

*Prikl.+fatem.&khan.,40,2,333-336,1984 



239 

Then W = (712 - EV?n)/(E&2 - Yn) 

Substituting (20) into (1) and applying the vortex operation to the system, we obtain, 
apart from a term in the form of a harmonic function, 

x = -(frtz/atf\B. W= $& (YUYZ'L - r:) (5) 

b-1 Psin 9 + W)1D = 0 (6) 

The dispersion equation (4) is obtained in /5/. Rather awkward formulas for Ei and "lr 

are also given there, which we do not write down here. The least wave number h, in absolute 
value corresponds to a longitudinal wave of the first kind. 

The scalar potential L of the displacement w in the fluid, defined by the relationship 
w =VL satisfies the Helmholtz equation 

AL+ l?L = 0 

where k is the wave number for plane longitudinal waves in the fluid. 
The solutions of (31, (6) and (7) have the form 141 

A, = x a$$$ (kf) P (cos CI), n r&a 
n=e 
05 

JI = 2 ~,,!I$? (ksr) Pi’ (cos 8), r>ct; L= $j a,j,(kr)Pn(cosG), r<flr 
n=o 7l=O 

Here h$j) (I: and i,,(z) are Rankel spherical functions of the first kind 
ical functions of order nandargument x, while Pn(5) and P:)(Z) are Legendre 
real argument. 

(7) 

(8) 

and Bessel spher- 
functions of a 

An incident plane longitudinal wave of the first kind can also be expanded in a series 
of spherical functions /4/ 

erp (ik,r cos 8) = 2 in (2~ + 1) i,, (k,r) P,, (cos 6) 
a=a 

(9) 

The following conditions must be satisfied on the boundary r=o between the porous medium 
and the fluid /5/: 

(1 - QI) L'r + CD!', = u', (10) 
r,, = -P&s P = Pp l-& = 0 ($3) 

where u‘~ is the radial component of the displacement of the fluid filling the cavity, rif are 
the total stress tensor components in the porous medium, and p,pb are, respectively, the 
fluid pressure in the pores and in the cavity. 

Condition (10) expresses the continuity of the normal displacements on the interface, 
the first two relationships in (II), the continuity of the total stress and pressure components 
normal to the boundary, and the last relationship in (ll), the condition for there to be no 
tangential stresses on the boundary with the fluid. 

The amplitudes of the scattered and excited waves are found by solving the system of 
linear equations obtained after substituting expansions (8) and (9) for the scattered and 
incident wave potentials into the boundary conditions (10) and (11). 

The incident wave energy flux density and the scattered wave energy fluxes are determined 
by the expressions 

ji=-~[A+2.~+20Ren~~+Rfm,~‘]/ktj~Rek~ (42) 

Ji= - 2nwcxp[-2 Im (kp)][(A + 2N+ 2QRe nli+ 

Here i, is the incident wave energy denisty,Ji are the scattered longitudinal wave energy 
flux of the i-th kind, and J, is the energy flux excited because of transverse wave scattering, 
The scattering cross-sectionsaredefined as the ratios of the scattered wave energy fluxes 
to the incident wave energy flux density. 

Out-of-phase motion of the solid and liquid phase particles corresponds approximately to 
a longitudinal wave of the second kind, hence its damping is large, and as a rule, it is not 
recorded in experiments on the acoustics of consolidated porous media. Consequently, the 
computations were performed just for an incident longitudinal wave of the first kind. The 
scattering cross-sections by a spherical cavity with fluid in an equivalent single-phase 
elastic medium were also computed for comparison. The equivalence was understood in the sense 
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of equal mean densities and agreement between the longitudinal and transverse wave velocities 
in the limit case as 0-O. 

The parameters of the fluid filling the cavity and the pores of the surrounding medium 
corresponded to water under normal conditions. 
porous medium: porosity QI -0.25, 

The following quantities were given for the 
limit values of the longitudinal wave velocity cP = 3800 misec 

and transverse wave velocity c,=2200 m/set as o-0 and mean density p = 2.35.103 kg/m3. The 
solid phase material parameterscorrespondedtolimestoneunder natural conditions. The magni- 
tude of the mass coupling coefficient between the phases was selected to be /6/ plz =-!'Q@(l - 

Wh z -O.iBJ&. 

Fig.1 Fig.2 

Fig.3 Fig.4 

The results of computing the scattering cross-section o1 for a longitudinal. 'wave of the 
first kind are represented in Fig.1 by the continuous lines. Curve 1 represents the depend- 
ence of the longitudinal wave scattering cross-section in a single-phase elastic medium by a 
spherical cavity with fluid in the frequency, and curve 2 is the frequency dependence of 
the scattering cross-section of a longitudinal wave of the first kind in a porous medium. In 
both cases the scattering sections are resonant in nature. The first two resonances are 
presented on the graph, where the centrally symmetric radial vibrations specify the fundamental 
mode, and the second the dipole mode. Scattering cross-sections specified by these modes are 
given (curves 3 and 4). 

A singificant decrease in the scattering cross-section is observed for a 10-13 m2 perme- 
ability of the prous medium as compared with an equivalent single-phase medium, especially in 
the domain of the principal resonance. This diminution is associated with the drop in the 
quality of the resonances because of the losses in the radiation of the longitudinal wave of 
the second kind. Moreover, the resonances are shifted somewhat towards the low-frequency 
side since an additional apparent mass of fluid vibrating in the pores occurs. 

The transverse wave excitation cross-section oI in the same frequency range (the dashed 
lines in Fig.1) has several maxima in a single-phase medium (curve 5), which are smoothed out 
for the two-phase medium (curve 6). 

The excitation cross-section of a longitudinal wave of the second kind also has a reson- 
ant nature (Fig.2, curve 1). The lowest-frequency resonance scattering occurs because of 
dipole scattering (curve 21, here the excitation cross-section of a longitudinal wave of the 
second kind exceeds the scattering cross-section of a longitudinal wave of the first kind. 
Monopole (curve 3) and quadrupole (curve 4) scatterings affect the frequency dependence 
of the excitation section of a longitudinal wave of the second kind substantially (curve 1). 
From a comparison of Figs.1 and 2 it follows that the resonance excitations of scattered long- 
itudinal waves of the second kind are due to resonance excitations of both the scattered 
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longitudinal waves of the first kind and the scattered transverse waves. The latter is ex- 
plained by the fact that the cavity wall motion is of maximum amplitude in the resonance domain 
of these kinds of waves. 

In the low-frequency domain Ik,aj and Ik,oI are small compared to Ik,aI. which results 
in a large contribution of effects associated with waves of the second kind to the magnitude 
of the total scattering cross-sections for fairly high permeability. The dependences on the 
permeability K of the ratio between the scattering cross-section of a longitudinal wave of 
the first kind s1 and the excitation cross-section of a transverse wave a3 in a porous medium 
and the corresponding sections 0,' and ego in an equivalent single-phase medium for IkIaI =O.lC 

are given in Fig.3. As the permeability decreases, both ratios 0,/o," (curve 1) and a,/o,O 
(curve 2) tend to one since the medium goes over into a single-phase medium as K-O. In the 
domain of high permeabilities the sections cease to depend on K because of the smallness of 
the influence of the viscous effects (b=O). 

The ratio of the excitation cross-section of the scattered longitudinal wave of the second 
kind o, to the total scattering cros s-section of all kinds of waves (I grows rapidly as the 
permeability increases (Fig.41 and for X = lO-lz- 10-10m2 reaches a value of 0.7-0.8. The 
dependences presented were computed for PI?= 0 (curve 1) and hr= -0.125~~ (curve 2). At low 
frequencies the scattering cross-sections of the longitudinal wave of the first kind and the 
cross-section of transverse wave formation depend weakly on the permeability of the saturated 
porous medium (Fig .3). In contrast, the excitation cross-section of the wave of the second 
kind depends strongly on the permeability, and even exceeds the scattering cross-section of 
the wave of the first kind for permeabilities of 10-~~-~O-~dm2. For li> 2.7.10-'3rn2 the excita- 
tion cross-section of a longitudinal wave of the second kind exceeds the total scattering 
cross-section of the longitudinal wave of the second kind and the transverse wave, i.e., 
(o,io) > 0.5 (Fig.41 . 

Therefore, the main distinctions of wave scattering by cavities with fluid in a saturated 
porous and in an elastic single-phase medium at both resonance scattering and scattering at 
low frequencies are due to the formation of waves of the second kind, i.e., to hydrodynamic 
effects near the cavity boundaries. 
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